
Erosive Burning of Solid Propellants 
 

 Erosive burning is the dependence of the burning rate of solid propellants on the crossflow 
properties of the burned products over the burning surface. This is in addition to the burning rate 
being dependent on the static pressure experienced by the surface. Let us call the latter burning rate as 
the one at zero crossflow or “normal” burning rate. There are quite a few burning rate equations 
proposed for the normal burning rate. The most widely used one is due to Saint-Robert and is given 
by, 
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where a  is the pre-exponent factor, n  is the combustion index, and p  is the static pressure 
experienced by the burning surface. 

The most famous and widely recognized erosive burning model was developed by Lenoir and 
Robillard based on heat transfer theory [Lenoir, J. M. and Robillard, G., “A Mathematical Model to 
Predict the Effects of Erosive Burning of Solid Propellant Rockets,” Proceedings of the Sixth 
International Symposium on Combustion, 1957, pp. 663-672.]. In this model they proposed the 
following mechanism. To maintain combustion, the solid propellant receives heat from two sources to 
bring each succeeding layer of propellant to the burning surface temperature sT  from the base 

temperature iT .  
The first source of heat is from the primary burning zone. The mechanism of heat transfer 

from this primary zone to the propellant is by a complex combination of conduction, heterogeneous 
turbulent convection, and radiation. The narrower the primary burning zone, the less resistance exists 
to heat transfer by this complex mechanism. Increased static pressure is considered to narrow the 
primary burning zone through an increase in the gas phase reaction rate. This mechanism of heat 
transfer rate is thus static-pressure dependent but it is independent of the crossflow velocity. 

The second source of heat is from the crossflow of combustion products through the 
convective heat transfer and is dependent upon combustion flow rates. Thus the burning rate is 
proposed to be the sum of the two effects, a rate dependent on static pressure 0r  and an erosive rate 

dependent upon the combustion-products crossflow rate er . Thus, 
 

e0 rrr        (2) 
 
where 0r  is the normal burning rate component and er  is the erosive burning rate component. The 
erosive burning rate component is postulated to be proportional to the convective heat transfer 
coefficient h  under the condition of blowing and can be written with respect to convective heat 
transfer coefficient with zero blowing 0h  as 
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Substituting Eq. (3) into Eq. (2), we get, 
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The convective heat transfer coefficient under zero blowing 0h  is correlated by Chilton-Colborn 
equation for flow over a flat plate, 
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Although this equation is originally proposed for flow over flat plate, it can be applied to flow through 
grain ports by incorporating the characteristic dimension as the hydraulic diameter D . Combining 
Eqs. (5) and (4), 
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Noting uG   and uDRe  , Eq. (6) is simplified to, 
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where,  
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An expression for k  is derived by considering the energy balance between the heat transfer from the 
flame to the propellant surface and the heat required to raise the propellant temperature from its initial 
temperature iT  to the surface temperature sT . The heat balance per unit area is given by, 
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This equation assumes that there is no significant exothermic or endothermic process occurring in the 
solid phase during the heating from iT  to the burning surface temperature sT . Solving Eq. (9) and 

comparing with the earlier expression for er  in Eq. (4), 
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Therefore, the erosive burning rate equation due to Lenoir and Robillard can be written as 
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Although the value of   was proposed to be 53 by Lenoir and Robillard based on their experiments, 

the value of   can be chosen based on the experimental results of the motor and propellant under 
investigation. 
 
Example 



An aluminized composite propellant has the following properties. 
Specific heat of solid propellant sc     = 1400J/kg-K 

Density p         =1750 kg/m3 

Pre-exponent factor a  in the burning rate equation n
0 apr     = 3x10-5 m/s 

Burning rate index n       = 0.4 
Adiabatic flame temperature (stagnation temperature) 0T   =3610 K 

Stagnation pressure 0p       = 7 MPa 

Molar mass       =29.7 kg/kg mol 
Specific heat at constant pressure of combustion products pc    = 1975 J/kg-K 

Viscosity of combustion products       =1.0049x10-4Poise 

Prandtl number Pr       =0.4922 
Average surface temperature of burning propellant sT   =1000 K 

Propellant base temperature iT      =300K 

 
The hydraulic diameter of the grain port is 0.1m. If the propellant is assumed to follow the Lenoir-Robillard 
erosive burning rate model, calculate the total burning rate of the propellant for two crossflow Mach numbers of 
0.5 and 0.6 at the given stagnation temperature. Distinguish the normal and erosive component of the burning 
rates. Assume that   in the Lenoir-Robillard equation to be 60. The Lenoir-Robillard equation is given by 
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Solution   The total burning rate (normal burning component plus the erosive burning component) has be 
calculated for a fixed stagnation pressure under two crossflow Mach numbers. From the given values, the ratio 
of specific heats  , and static pressures and mass fluxes for the two crossflow Mach numbers have to be 
calculated. Since the total burning rate r  is implicit, the total burning rate has to be calculated through a suitable 
iteration. 
 
Assumptions   Although it is known that propellant surface temperature increases as the static pressure 
increases, its variation is small in the rocket operating pressure variation during equilibrium operation. 
Therefore, here the propellant surface temperature is assumed constant. 
 
Analysis    
The mass flux G  is given by 
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By routine gas-dynamic manipulations we get 
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The normal burning rates are given by, 
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For the crossflow Mach number of 0.5, the total burning rate is given by, 
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Solving iteratively we get the total burning rates at the crossflow Mach number = 0.5 as, 
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The erosive burning rate component at the crossflow Mach number of 0.5 is, 
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The erosive burning ratio  , defined as the ratio of the total burning rate and normal burning rate, for the 
crossflow Mach number of 0.5 is given by 
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For the crossflow Mach number of 0.7, the total burning rate is given by, 
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Solving iteratively  we get the total burning rate at the crossflow Mach number = 0.7 as, 
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The erosive burning rate component at the crossflow Mach number of 0.7 is 
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The erosive burning ratio  for the cossflow Mach number of 0.7 is given by 
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Discussion   As often said a successful model need not be of non-tractable mathematics; nor should it be fully 
correct. After Lenoir-Robillard model, although quite a few modelling efforts and improvements have been 
done for erosive burning effect, the model of Lenoir-Robillard captures the most observed behaviours of erosive 
burning phenomenon. Here in this example we find that the erosive burning effect is more for higher mass flux, 
which is a known fact. On further analysis you will find that the model predicts the erosive burning effect to be 
more for smaller motors (for smaller characteristic dimension D ) and slower burning propellant, which are the 
observed behaviour in rocket motor operations. 
 The properties given in the example such as adiabatic flame temperature 0T , specific het of combustion 

products at constant pressure pc , molar mass, viscosity, and Prandtl number can be determined for the chosen 

propellant by adopting standard codes such as CEC71. 
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